Lead time, more than any other variable, reveals where true problems exist in the supply chain. Look for bottleneck operations, then investigate how and why they happen and what impact they have. Optimizing manufacturing operations management requires many things to be fine-tuned, but eliminating persistent delays and lost time is the priority.
2. DRAW ON EXISTING DATA.
Even if manufacturers need to collect more data from more sources to gain true insights, they already have data they can begin analyzing. It could be financial, operational, or physical — all of it contains insights that might be relevant to process engineers and continuous improvement experts. Working with available data helps companies cultivate their capabilities for the “big” data coming later.
3. USE AI TO SEARCH FOR INSIGHTS.
Collecting data is the first challenge; finding the insights within that data is the second. AI can aid this effort because it’s smarter and faster than humans. Analytics-driven by AI have been shown to improve order-to-delivery cycle times by 425% and supply chain efficiency by 260%. Compared to the alternatives, AI in supply chain makes it easy to begin leveraging analytics effectively.
4. EXPOSE THE UNKNOWNS.
The majority of details related to operations are unknown, even at the world’s leading factories. Data should be collected from sources that can illuminate these unknowns. Installing connected sensors is an ideal way to learn about previously opaque processes.
5. KEEP THINGS IN PERSPECTIVE.
As manufacturers become more fluent with data, it’s tempting to become as tech-driven as possible. However, fully automated manufacturing is only an asset for some companies, namely those with predictable demand. In companies where demand is dynamic, automation is less of an asset. Every technology should be evaluated based on whether it delivers actual business value rather than just advanced capabilities.
People mistakenly think manufacturing is data-driven because logically it absolutely should be. Decision-makers are discovering this at the exact same time that technologies like IoT and Big Data solutions are finally making it possible. It’s an incredible opportunity, but soon it will become an industrywide obligation.
Towards data-driven bottleneck elimination technology
ThroughPut’s Supply Chain planning software ELI is an AI-Powered Bottleneck Elimination Engine that analyzes your existing industrial data in real-time. ELI continuously detetects, identifies, prescribes and prevents your shifting operational bottlenecks to save millions in delays, inefficiencies &lost revenue. YOu finally can breakthrough bottlenecks that clog productivity, growth and profitability using data-driven decisions.
Click here to start your free trial with ELI today and start benefiting from the power of “data” for your factory operations.